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Drug addiction is a chronic brain-based disorder that affects a person’s behavior and leads to an inability to control drug usage.
Ubiquitous physiological sensing technologies to detect illicit drug use have been well studied and understood for different
types of drugs. However, we currently lack the ability to continuously and passively measure the user state in ways that might
shed light on the complex relationships between cocaine-induced subjective states (e.g., craving and euphoria) and compulsive
drug-seeking behavior. More specifically, the applicability of wearable sensors to detect drug-related states is underexplored.
In the current work, we take an initial step in the modeling of cocaine craving, euphoria and drug-seeking behavior using
electrocardiographic (ECG) and respiratory signals unobtrusively collected from a wearable chest band. Ten experienced
cocaine users were studied using a human laboratory paradigm of self-regulated (i.e., "binge") cocaine administration, during
which self-reported visual analog scale (VAS) ratings of cocaine-induced subjective effects (i.e., craving and euphoria) and
behavioral measures of drug-seeking behavior (i.e., button clicks for drug infusions) are collected. Our results are encouraging
and show that self-reported VAS Craving scores are predicted with a normalized root-mean-squared error (NRMSE) of 17.6%
and a Pearson correlation coefficient of 0.49. Similarly, for VAS Euphoria prediction, an NRMSE of 16.7% and a Pearson
correlation coefficient of 0.73 were achieved. We further analyze the relative importance of different morphology-related ECG
and respiratory features for craving and euphoria prediction. Demographic factor analysis reveals how one single factor (i.e.,
average dollar ($) per cocaine use) can help to further boost the performance of our craving and euphoria models. Lastly,
we model drug-seeking behavior using cardiac and respiratory signals. Specifically, we demonstrate that the latter signals
can predict participant button clicks with an F1 score of 0.80 and estimate different levels of click density with a correlation
coefficient of 0.85 and an NRMSE of 17.9%.
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Fig. 1. The addiction loop [16].
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1 INTRODUCTION
Abuse of illicit drugs such as cocaine costs the US healthcare system more than $600 billion annually [24],
and there is substantial interest in finding better drug addiction treatments. Beyond reducing health care costs,
improved treatments are desperately needed to reduce drug-related morbidity, mortality (e.g., drug overdose) and
lost productivity in those who suffer from the disorder. One of the greatest challenges in treating drug addiction is
understanding the real-world antecedents of recurrent drug use, including the relationship between drug craving,
drug-seeking behavior and drug-induced euphoria (i.e., "high"). Current clinical approaches, including brief in-
person appointments, insufficiently capture the dynamic nature of drug craving, use, and euphoria. For example,
retrospective self-reports during such visits are inevitably subject to recall bias, prone to misrepresentation,
and fail to capture unconscious aspects of addictive behaviors that may be genuinely beyond the subject’s
awareness. If ubiquitous and mobile health sensing technologies were able to automatically and reliably measure
physiological predictors of drug use, including on an individualized (i.e., personalized) basis, such methods might
dramatically and positively impact current approaches to addiction treatment.

While there have been several recent efforts to use mobile health sensing technologies such as smartwatches,
chestbands, and smartphones in the context of understanding drug-use behavior [11, 22, 41], crucial gaps exist
in our ability to model the other integral components in the positive and negative reinforcement loop that
characterizes addiction ( Figure 1). With the exception of neuroadaptations which would require neuroimaging
[25], other components in this cycle, including drug craving, drug-seeking behavior, and drug-induced euphoria
are amenable to continuous sensing by mobile health technologies. Although some recent studies have proposed
mobile and wearable sensor-based solutions to detect drug use [22, 41], psychological stress [23, 31] and other
contextual variables [29], the potential to continuously infer subjective effects variables that occur in anticipation
of (i.e., "before") and during (i.e., "after") drug use from physiological signals detected by wearable sensors is
underexplored. In this paper, we aim to bridge this important gap by demonstrating that passively captured
cardiac and respiratory signals from a wearable chest band can be used to predict cocaine craving and euphoria,
as well as drug-seeking behavior.
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Our paper deals with three variables – drug craving, euphoria, and drug-seeking behavior which are key
components of the addiction loop model (as can be seen in Figure 1) [26, 38, 59]. Craving constitutes a state of
drug-wanting, one thought to precede recurrent and/or repeated drug use. Conversely, cocaine euphoria most
commonly connotes a positive affective state or subject "high" that a user experiences upon consumption of the
drug. Drug-seeking behavior may include real-world compulsive behaviors such as visiting locations where the
drug can be obtained, or in the case of our human laboratory study, repeated button pressing in an effort to
acquire additional doses of the drug. The positive reinforcement model suggests that a drug’s euphoric effects
and associated development of memory traces for the drug experience lead to drug craving and compulsive
drug seeking. The negative reinforcement model suggests that withdrawal symptoms can increase craving and
compulsion to use substances. Frequent craving and the lack of self-control can be associated with different
addictive disorders and relapse [50]. Figure 1 shows how these two models interact within the cycle of addiction
to predispose to relapse/recurrent drug use, including by conditioned, drug-related cues and by psychological
stress.

We seek to address these gaps by developing a prediction model for drug craving, euphoria, and drug-seeking
behavior using physiological (i.e., cardiac and respiratory) signals obtained from wearable technology. We
accomplish this using a wearable chest band that continuously measures the electrical activity of the heart and
the periodic expansion/compression of our chest by using electrocardiographic (ECG) and respiratory inductance
plethysmography (RIP). With the help of systematic feature engineering, we identify a set of craving and euphoria
correlates by extracting the morphological information from ECG and breathing signals and then by capturing
the temporal changes of their distribution.
We obtained promising results on two fronts. First, we show that we can accurately predict self-reported

craving and euphoria. From a Leave-One-Subject-Out Cross-Validation (LOSOXV) experiment with a linear
regression model trained on a set of highly informative, morphology-related ECG and breathing features, we
show that we can predict the self-reported visual analog scale (VAS) craving scores which were reported on a
scale 0-10 with a Pearson correlation coefficient (ρ) of 0.49 and a root-mean-square error (RMSE) of 1.76. Similarly,
with another LOSOXV experiment using a linear regression model trained on a different set of highly informative
ECG and breathing features, we show that we can predict the self-reported VAS euphoria scores which also
were reported on a scale 0-10 with ρ of 0.73 and RMSE of 1.67. We demonstrate that ECG features contain
more information about cocaine-induced internal states (i.e., craving and euphoria) than breathing features. We
further dive deeper into a detailed feature importance analysis, where we show that two different groups of the
morphological descriptors are informative about craving and euphoria. Lastly, we have a key demographic factor
that can impact the performance of our VAS Craving and Euphoria models.
We show strong results on predicting drug-seeking behavior i.e., the times when a subject requests another

drug dose ( i.e., by temporally recorded button clicks to the drug infusion pump). With a logistic regression model
trained on a set of highly informative, morphology-related ECG and breathing features, we classified click vs.
no-click on a “minute by minute” level with an F1 score of 0.80 and precision, recall of 0.79 and 0.82. The results
from this model are then used to infer click density i.e., the rate at which an individual clicked to request drug
infusions on a scale 0-10. We observed that it is highly correlated with ground truth click density with a ρ of 0.85
and an RMSE of 1.79. Overall, with these results, we demonstrate that it is indeed possible to develop mobile and
ubiquitous technology that can passively and continuously monitor an addict’s craving and euphoria level, as
well as drug-seeking behavior. As such, our wearable solution shows considerable promise for monitoring and
potentially developing holistic models of the complex relationships between drug craving, euphoria, and drug
seeking in the real world.
In summary, our contributions are:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 46. Publication date: June 2019.



46:4 • B.Gullapalli et al.

• With the information contained by the morphology of cardiac and respiratory signals from a wearable
chest band, we have developed a machine learning model that predicts subjective self-reports of cocaine
craving and euphoria. While there are some prior works on modeling craving in the context of smoking
[13], we are unaware of any prior work on continuous and passive sensing of craving and euphoria for
cocaine use with mobile and ubiquitous technology.

• We present a detailed analysis of the relative feature importance of different morphological descriptors
of ECG and Breathing signal for cocaine craving and euphoria modeling. Two distinctly different sets of
morphological descriptors are important for craving and euphoria.

• We systematically analyze a set of key demographic factors and identified that “average dollar spent per
use” impacts how one would score craving and euphoria. Just by using this factor as an additional input,
our craving and euphoria models could fine-tune their predictions and attain better performance.

• Lastly, using cardio-respiratory signal we predict participant’s “minute-by-minute” clicks and subsequently
click density. In our laboratory model, we employ button click density as an objective measure for drug-
seeking behavior which is found to be highly correlated with ground truth VAS Craving values.

2 RELATED WORK

Table 1. Overview of the existing literature on modeling drug craving, drug-seeking behavior, drug administration and drug
euphoria for different types of addictive substances.

Addiction Type Literature Sensors Data Obtrusiveness C
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Cocaine Risinger et al. [47], Bonson et al. [9] fMRI High ✓ × × ×

Opioid, Cocaine Redish et al. [46], Lu et al. [32] Neuroimaging, Electrophysiological High × ✓ × ×

Alcohol Ehlers et al. [18] Electroencephalography (EEG) High × × × ✓

Cocaine Mannelli et al. [34] EEG and Heart rate High × × × ✓

Smoking Chatterjee et al. [13] ECG, Accelerometer, Respiration Low ✓ × × ×

Alcohol Shi et al. [48], Sun et al. [52]
ECG, Accelerometer, Respiration

and skin temperature Low ✓ × × ×

Opioid Boyer et al. [10]
Electrodermal Activity (EDA) , Body Motion,

Skin Temperature and Heart rate Low ✓ × × ×

Smoking Ali et al. [4] Respiration Low × × ✓ ×

Alcohol
Bernstein et al. [8],

Zhang et al. [61] , Wang et al. [57]
ECG, Accelerometer, Respiration

and skin temperature Low × × ✓ ×

Opioid
Carreiro et al. [11],
Mahmud et al. [33]

EDA, Body Motion, Accelerometer
Skin Temperature and Locomotion Low × × ✓ ×

Cocaine
Natarajan et al. [39, 41],

Hossain et al. [22]
ECG, Accelerometer

and Heart rate Low × × ✓ ×

Cocaine Our work ECG and Respiration Low ✓ ✓ × ✓

2.1 Craving
The term craving can be understood as a “wanting” [27] of a desired outcome (e.g., reward), or in the case
of the current study, cocaine. Craving has been studied by researchers with both medical and computational
backgrounds. From a medical perspective, fMRI brain imaging has been extensively applied to neurobiological
studies of cocaine craving physiology and modeling. These studies suggest that craving is associated with
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dopamine release in the brain [55], activation of limbic brain regions [15], and changes in patterns of regional
brain activation in circuits involved in the processing and prediction of rewards. Several studies have used
fMRI imaging to capture changes in neural activities to model cocaine craving moments [9, 47]. However, fMRI
techniques are highly intrusive, and as a result, such experiments are typically limited within a constrained
neuroimaging setting and thus do not lend themselves to a mobile and ubiquitous approach. The feasibility of
sensors for modeling craving has been explored in other substance addiction problems. In the case of cigarette
craving, Chatterjee et al., [13] proposed a Conditional Random Field-based model to predict the self-reported
craving scores using ECG, respiration and 3-axis accelerometer. It was observed that stress level and time of the
day provide sufficient information for estimating cigarette craving. In the case of opioid and alcohol, various
studies have been designed and conducted to collect craving data in the form of self-assessments using sensors
[48, 52], and a few other studies discussed the computational models which can be used to predict craving [10].
However, none have deployed a fully functioning system capable of inferring craving except in the case of
smoking. As relates to cocaine, there are a few studies which have discussed the effect of craving on sensory
data. Carter and Tiffany [12] have shown that drug craving gives rise to a significant increase in heart-rate,
sweat-gland activity, and skin temperature in response to drug-related cues. Sinha et al. [49] observed that acute
stress (i.e., in the form of imagery-guided scripts) leads to an increase in self-reported cocaine craving scores
and heart rate. To our knowledge, however, ours the first work that attempts to infer (i.e., predict) self-reported
craving scores for cocaine using sensory data (i.e., ECG and RIP).

2.2 Drug-seeking Behavior
Drug-seeking behavior is central to addictive disorders, particularly as it relates to issues of recurrent use (i.e.,
relapse) [58] and drug withdrawal [53]. To date, the vast majority of research into the neural substrates of
drug-seeking behavior and reinstatement of drug self-administration derive from preclinical experiments and the
modeling of data from laboratory animals (e.g., rodents) [19, 32]. While similarities in drug-related behaviors
across rodents and humans exist, distinct differences have also been identified [6]. Thus, there remains an
important role for clinical translational studies of human drug-administration and related behaviors in humans.
In the current study, we employed a safe and previously validated human laboratory paradigm of self-regulated
(i.e., "binge") cocaine administration in experienced users of the drug for the purpose of trying to identify
physiological predictors of cocaine-induced subjective effects (e.g., craving and euphoria) and drug-seeking
behavior (operationalized as button presses for drug infusions).

2.3 Drug Administration
Although manual logging in a diary or smartphone apps has been traditionally used to keep track of the
consumption or administration of substances of use or abuse [7, 36, 43], several recent efforts have explored
the use of mobile sensing technologies. Some of these technologies require active participation from the users.
For example, SoberDiary [57] has used a Bluetooth breathalyzer to assist participants in self-monitoring their
alcohol consumption behavior by measuring breath alcohol concentration. In another study, You et al. [60]
tested ketamine administration by analyzing saliva through a Bluetooth-enabled device. Voss et al. [56] used
a human body odor sensing mechanism to recognize cannabis administration. Several recent works focused
on wearable sensors that passively and continuously (i.e., without needing users’ active participation) captures
different relevant physiological parameters to predict whether the user has consumed a particular drug. Zhang
et al.[61] developed a system that uses ECG and respiration signal from a smart sensor shirt [2] to detect alcohol
administration. In this study, ECG features alone were found to be sufficient to achieve an accuracy of 71%.
Similarly, Bernstein et al. [8] proposed convolutional neural networks (CNN) trained on the spectrogram of 1D
heart rate data to detect alcohol administration and attained an accuracy of 74%. In the case of opioids, Carreiro
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et al. [11] and Mahmud et al. [33] have used Affectiva wristband with built-in electrodermal activity (EDA),
accelerometer and skin temperature sensors to detect opioid administration with an accuracy of up to 99%. Skin
temperature and accelerometer sensor data were found to be the most important modality for differentiating
between pre and post opioid intake moments. Smoking detection has been performed by Ali et al. [4] using
respiration features alone and were able to achieve an accuracy of up to 86%. Finally, in the case of cocaine
administration, Natarajan et al. [39, 41] used ECG based features and Hossain et al. [22] used accelerometer
and heart rate for cocaine administration. These experiments were done both in the lab and field setting, and an
average area under the curve (AUC) of 0.80 has been achieved.
While prior work has primarily explored the detection of drug administration, our focus is on subjective

measures such as craving and euphoria. The ability to predict subjective variables is particularly important in
order to model the addiction loop at an individual level.

2.4 Euphoria
Drugs of abuse can have numerous and diverse physiological effects on the body depending on their specific
underlying pharmacology. However, common to many (but not necessarily all) drugs of abuse, including cocaine,
is the experience of a positive subjective experience euphoria [21]. Depending on the drug, subjects can describe
such states variably (e.g., "drunkenness" for alcohol or "high" for cocaine). The study of physiologic correlates of
subjective euphoria using on-body sensors has been performed for alcohol and cocaine. In the case of alcohol,
Ehlers et al. [18] showed that drunkenness is associated with significant changes in Electroencephalography (EEG)
power in the slow alpha frequency range. Mannelli et al. [34] observed that during combined alcohol and cocaine
administration, euphoric effects could be identified by EEG power spectral analysis in alpha and beta activity.
There have also been several works which related ’high’ in cocaine with increased heart rate [5, 37, 44]. Although
it is possible that the pharmacological properties of a drug of abuse may exert its central behavioral (e.g., brain) and
peripheral physiological (e.g., heart) effects via shared pharmacological mechanisms (e.g., monoamine reuptake
blockade in the case of cocaine), it is almost certainly the case that relationships between these measures primarily
reflect temporal correlations of drug effects on organ-specific systems/physiologies (e.g., mesolimbic dopamine
circuits and cardiac ion channel or sympathetic nervous system norepinephrine, respectively). Importantly,
however, such correlations with peripheral measures nonetheless hold significant potential, we believe for
inferring central subjective states of relevance to the pathophysiology and treatment of substance use disorders,
In this regard, the current work differs in two crucial ways. First, we try to model euphoria with ECG and
respiration using unobtrusive sensors. Second, prior work has not used such sensor data to try to quantitatively
infer (i.e., on a 0-10 scale) levels of euphoria (e.g., which we refer to as the VAS Euphoria hereafter) vs. mere
qualitative differentiation of euphoric and non-euphoric states.

3 USER STUDY DESIGN
Our dataset was collected from a National Institute on Drug Abuse (NIDA) funded research study conducted at
the Yale University School of Medicine. In this study, we were looking for individuals who are medically healthy,
non-treatment seeking, and experienced cocaine users. For each subject successfully enrolled in the study, we
first had to phone screen roughly 60 individuals. Here we asked questions about demographics such as age,
their frequency/routes of cocaine use, whether they used other drugs, whether they had any other co-morbid
psychiatric or medical problems, and whether they were taking any psychotropic medications that would exclude
them from the study. From these 60 individuals, we had roughly 5-10 potential participants who were brought to
the in-person screening where we performed a physical examination, blood work including pregnancy test (when
applicable), electrocardiogram (ECG), urinalysis, urine toxicology and excluded individuals not eligible because of
medical, psychiatric, or other conditions. This process usually yielded 1-2 eligible participants who could actually
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participate in our laboratory study. These individuals were typically scheduled in advance (up to a month). Thus
we identified 10 individuals (with an average rate of 1 subject per month) who were then individually studied as
part of a 6-hour human laboratory session in Clinical Neuroscience Research Unit (CNRU) of the Connecticut
Mental Health Center (CMHC). During the study, they were allowed to self-administer cocaine while wearing
on-body physiological sensors. We have collected approximately 60 hours of sensors data from our study. The
cocaine study was IRB approved and shown previously to be safe, well tolerated, valid, behaviorally relevant, and
test-retest reliable [51], and was conducted in the presence of a study physician, advanced cardiac life support
certified research nurse, and a basic life support research assistant. We had a research pharmacist who prepared
the drug for IV administration. Note that while the sample size of 10 appears small compared to typical user
studies with wearables, studies involving cocaine administration [28, 30, 35] usually publish samples in the teens
(10-20), both given the cost/subject (approximately $10-20K USD per subject) and large pharmacological effect
sizes.

3.1 On-body Wearable Sensor
The Zephyr Bioharness 3 chest band [3] (shown in Figure 2) was used as the on-body wearable sensor. Each of
our 10 participants wore it throughout the entire study (approximately 6 hours) while Zephyr captures cardiac
and respiratory signal in a passive, continuous and relatively unobtrusive (for example, compared to Holter
monitor) manner. The electrode on the chest band can non-invasively detect electrocardiogram (ECG) signals.
Similarly, with the help of the built-in pressure sensor pad in the chest band on the subject’s left-hand side, it can
also capture the expansion and contraction of the rib cage due to breathing. The companion application further
processes the raw data to estimate RR interval (i.e., The QRS complex is the name given to the combination of
three graphical deflections observed on a typical ECG. The distance between the peak of one QRS complex to the
next is called the RR interval) , heart rate, respiratory frequency measurements. For our research in this paper, we
have used the raw ECG and breathing waveform data to extract different features which are then used to model
craving, euphoria, and drug-seeking behavior. The raw data is stored both in the local memory of the chest band
and in the smartphone with the help of a companion app. The data on the sensor is downloaded at the end of
each day and uploaded to a secure server while the sensor data stored in the smartphone helped us to salvage
data on occasions when the chest band platform failed to log the data correctly in its local memory. Out of ten
participants, three participants had highly corrupted/noisy or missing breathing data. As a result, we could only
use the ECG data from these three participants. This procedure has been detailed in Section 4.2.1.

3.2 Cocaine Study Protocol
Participants upon admission to the research unit go through a “wash-out” period where they stay abstinent from
the drugs for 2-5 days and get accustomed to the daily activities and on-body sensors. This unit is equipped
with 24 X 7 medical and nursing coverage, allowing for ongoing monitoring of abstinence (i.e., supervision of
subjects, screening of visitors, and compliance with inpatient requirements). This step ensures that absolutely
no drug is present in the body of our participants and that the results of this study are not affected by any
acute influence of previous drug use. After the “wash-out” period, each subject participated in a 6-hour cocaine
study. This 6-hour study was comprised of three distinct periods, in the following order: a) an initial drug-free
baseline period, b) a subsequent fixed-order, escalating dose, bolus cocaine administration period, and c) a final
self-regulated/administrated, ad-libitum (i.e., "binge") cocaine administration period. The participants wore Zephyr
throughout the entire study which continuously and passively recorded raw ECG and breathing waveform data,
as described in section 3.1. In addition, self-ratings of craving and euphoria were captured by visual analog scale
(VAS) every five minutes throughout the study.
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Fig. 2. a) Zephyr chest band. b) Infusion Pump button, used to request cocaine in Self-administration period. c) Brief sketch
of participant during the Self-administration period of the study.

Baseline and Fixed Dosage Periods: The study is started with a 30-minute baseline period during which the
participant did not receive any cocaine. The baseline period is followed by the fixed dosage period where three,
separate bolus intravenous (IV) cocaine doses are administered as a fixed order in an escalating dose regiment.
Specifically, a single bolus of 8, 16, and 32 mg IV per 70kg body weight (with a 100 kg maximum cap) are given
with an interval of 20 minutes between each of them.

The primary purpose of the baseline period was to establish a stable behavioral and cardiovascular baseline
against which subsequent cocaine-related measures might be compared. The primary purpose of the fixed-order,
escalating dose period was to establish the ability of the study to safely tolerate the cardiovascular effects of the
doses of cocaine employed in the study. Specifically, subjects who exhibited a heart rate greater than 160 beats
per minute, diastolic blood pressure greater than 110 mm Hg, systolic blood pressure greater than 180 mm Hg, or
had evidence of clinically significant cardiac ectopy, arrhythmia, or other dangerous symptoms were excluded
from the subsequent "binge" cocaine self-administration procedures.
Self-administration Period:As the name “self-administration” indicates, this period was designed to simulate

a period of self-regulated, "binge" cocaine consumption. The participants obtain cocaine via self-initiated presses
of a corded infusion pump button (shown in Figure 2). Button presses elicit an audible beep from the pump
as feedback of subject’s request, after which the pump would infuse cocaine as a 30-second bolus according
to a fixed-ratio 1:5-minute timeout schedule (i.e., every button press resulted in a bolus injection of cocaine
except for presses occurring during the 5-min period following an active cocaine infusion). This single-blind
schedule is preprogrammed into the pump and used as a safety feature to allow sufficient time for subjects to
experience the subjective effects of a given cocaine bolus before a subsequent infusion was delivered. Specifically,
button presses during the 5-min timeout period, despite eliciting audible beeps, did not result in an active cocaine
infusion. As a result, button presses are comprised of two types, including both infusion and non-infusion clicks.
Thus, participants were allowed to receive as many as 12 IV infusions of the drug during a given 1-hour period
depending on their desire for any given dosage (limited only by rare instances in which pre-established vital sign
safety thresholds were exceeded and the pump button temporarily taken from subjects). Subjects were allowed to
press the button as they desired without instruction from the study staff beyond taking cocaine as they desired.
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All the cocaine self-administration procedure was conducted under the supervision of a study physician. Data
on button presses and infusions were recorded by the pump itself and served as primary behavioral outcome
measures for understanding potential relationships between drug consumption (i.e., infusions), desire for drug
(i.e., button presses; our operational measure of drug-seeking behavior) and other cocaine-induced subjective
effects (e.g., self-reported VAS ratings of craving and euphoria).
The self-administration period consisted of three, one-hour sessions, during which subjects received each

of the three cocaine dosage types (i.e., 8mg, 16mg or 32mg/70kg IV) under a fully-randomized, double-blind
schedule. The double-blind was ensured through the following process. Research nurse would first receive three
bags labeled 1, 2, and 3 stating the sequence in which they needed to be administered. Neither the participant
nor research nurse/study physician knew the dosage of cocaine present in either of the bags. At the end of
the study, the research pharmacy unblinded it to the research nurse and study physician. During a given 1 hr
self-administration session only a single dosage type is available to the subject and would receive this amount for
each bolus in that session. Subjects are unaware of the variable order in which dosage types are available to them.
However, across all the three self-administration sessions, each participant gets to experience all three dosage
levels, and the ordering of these dosage levels among sessions is randomly assigned. For example, participant 1
may get respectively 8-16-32 mg dosage sequence in the three consecutive self-administration sessions while
participant 2 might get 16-8-32 mg sequence. Each Self-administration sessions were separated by a break of
approximately 20 minutes.

3.3 Craving and Euphoria Self-Reports
Throughout the study, the participants are asked to self-report their craving and euphoria every 5 minutes
according to a visual analog scale (VAS) between 0 ("not at all") to 10 ("most ever"). Below please find the list of
questions, their scale, and their acronym. In order to refer to the craving or euphoria/high self-reports, we will
use the terms respectively VAS Craving and VAS Euphoria throughout the paper.

• VAS Craving (scale 0-10): how much are you craving for cocaine now?
• VAS Euphoria (scale 0-10): how high or euphoric are you feeling now?

Figure 2 shows the Zephyr chest band sensor used, infusion pump button, and finally a brief sketch of participant
during the study.

3.4 Example Sensor Data from a Participant
We now show a limited visualization of the sensor data to illustrate that there are interesting trends in the data
but also that there are challenges given the noise and variability.

Figure 3 shows the sensor data across all the periods of the cocaine study collected from one of our participants.
The start and end times of all the periods including the baseline period, fixed-dosage period, self-administration
period, and break times have been marked on the figure. All the click events (both infusion and non-infusion
clicks) can also be visualized on the first sub-figure in Figure 3. This figure also shows one sample cardiac activity
feature (i.e., mean RR distance), one sample respiratory activity feature (i.e., mean inhalation time), and the
two visual analog scale scores for cocaine craving and euphoria. Here, we have displayed one cardiac activity,
and one respiratory activity feature as the raw ECG and breathing waveform cannot be properly visualized in
this timescale of several hours. The RR distance essentially represents the distance between two large peaks in
the raw ECG data, hence captures the heartbeat period (i.e., heart rate). A detailed description of the ECG data
preprocessing and feature extraction can be found in section 4.
VAS Craving and Euphoria Scores: The first observation is that there are some very clear trends in the VAS

Craving and VAS Euphoria scores, particularly the latter. The participant reported a high level of craving (VAS
Craving) while reporting a low level of high or euphoria (VAS Euphoria) during the baseline period. The high
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Fig. 3. illustrates the sensor data, click events, and self-reports collected across all the different periods during a 6 hour-long
cocaine study with one of our participants. As raw ECG and Breathing data can not be visualized in this time scale (of 6
hours), we have derived one ECG feature (RR distance) and one breathing feature (inhalation time) for visualization purposes.

craving level is not surprising since the participant had to go through a rigorous “wash-out” phase without any
drug for several days preceding the study, leading to high anticipation levels. During the fixed dosage period, the
participant self-reported increasing VAS Euphoria scores, consistent with the predicted effects of cocaine.

In contrast, the VAS Craving score remains at relatively high levels but starts to reduce towards the end of the
self-administration period. This is also not surprising as during early periods, we use low doses of cocaine (e.g.,
8 mg) to ensure that there is no adverse reaction but this also produces a smaller than desired drug effect for
habituated users. As the dosage increases to larger bolus doses of cocaine (e.g., 32 mg), a reduction in craving
ratings can be observed. Interestingly, we see that during a relatively high 16 and 32 mg self-administration
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session, we can see the two VAS scores crossover. The VAS Euphoria scores increases while VAS Craving score
decreases. During the 32 mg self-administration session, the self-reported VAS scores show a high amount of
variability.

Two Sample Cardiac and Respiratory Signals: Let us now look at the two features that we have plotted
(RR distance and inhalation time) and see how it follows these VAS scores. During the baseline period, the
participant did not get any cocaine which is reflected by the relatively high RR distance. As the participant
progresses through the study and consumes more cocaine, RR distance decreases (as can be seen in Figure 3)
meaning heart rate increases. During the break or pause period, the RR distance increases slightly as the body
can cope with the stimulant effect of the drug. We can also observe a similar pattern in mean inhalation time. In
general, as the person consumes more drugs, the inhalation time or period decreases and the breathing process
becomes faster. It is clear that we can detect drug administration and estimate dosage level with cardiac signals
captured during a typical cocaine period which is also backed up by existing literature [22, 41].
Clicking Behavior: While somewhat hard to observe, the vertical lines in the top plot in Figure 3 show

infusion and non-infusion clicks of this participant. One trend that is immediately visible is that the rate of
clicks clearly follows the dosage level. For example, the participant clicked a lot in the 8 mg session since the
dosage was too low but when the dosage increases (particularly to 32mg), the clicks are increasingly sparse. This
clearly demonstrates some kind of regulation of drug-seeking behavior via clicks as a function of the craving
and euphoria levels. Also interesting is that the RR distances generally tends to dip after each infusion click but
appears to go up before the next infusion.

Thus, we can see that there is clearly useful information in the sensor signals that appear to correlate with the
trends observed in VAS Craving and Euphoria levels. However, there are clearly challenges since the features
themselves appear to be highly variable and noisy, and we need robust features that accurately capture these
trends. The fundamental challenge that this paper tackles is whether we can extract relevant and meaningful
information from the cardiac and respiratory signals of relevance to measures of craving and euphoria.

4 PREDICTING VAS CRAVING AND EUPHORIA SELF-REPORTS FROM CARDIAC AND
RESPIRATORY SIGNALS

In this section, we describe how we model VAS Craving and VAS Euphoria by extracting features from ECG and
respiratory signals. As mentioned in the previous section, our current study captures the cocaine craving and
euphoria levels of the participants every 5 minutes throughout the experiment, i.e., we have craving and euphoria
information when the subject is not intoxicated at all (baseline period), when the subject is intoxicated at fixed
time points (fixed dosage period), and when the subject self-administers and has complete control over when
to consume cocaine (self-administration period), as well as during break periods. Apart from all these, cardiac
information via ECG and respiratory information is also captured continuously and passively throughout the
study. In total, during a 6 hour study, we received approximately 72 VAS Craving and 72 VAS Euphoria scores
from each participant. Using all this data we ask a straightforward question: how well can we predict self-reported
craving and euphoria scores using information captured by ECG and Respiratory signals?

4.1 Model Architecture
Our overall model architecture for predicting VAS Craving and VAS Euphoria scores is shown in Figure 4. We
model VAS score prediction as a regression problem, where we predict what the subject answered for the self-
report questions using ECG and Breathing (BR) information from that minute and past N-1 minutes. We define
a window, which comprises of this N minute ECG and BR information. Since both VAS Craving and Euphoria
questions are asked simultaneously with the same fixed frequency, the model for each of these is identical and
uses the same window size parameters.
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Fig. 4. illustrates the modeling approach we used for subjective VAS Craving and Euphoria self-reports. Here we show a
sample model with a window length of 5 minutes and the frame length of 1 minute for both ECG and Breathing (BR).

ECG and BR signals are fast changing periodic signals. As a result, the properties or characteristics of these
signals can completely change in a much shorter span of time, compared to the typical length of a window. In
order to capture the temporal changes of ECG and BR signal properties, we break down each window into frames
and features are extracted from these frames. Extracting and feeding a sequence of frame-level features to the
model allows us to retain the temporal changes of the ECG and BR features over the course of a window.

The window and frame lengths are considered as hyperparameters to the model. For our VAS prediction models
we used integer length window sizes, N ranging from 1-5 minutes and selected frame lengths from [0.5,1,N /2,N ]
minutes. As ECG and BR signals are intrinsically at different rates and have different types of information, the
optimal window and frame length of ECG can be different from the optimal window and frame length of BR. For
this reason, we had separate hyperparameters for ECG and BR.

4.2 Feature Engineering Pipeline
The feature engineering pipeline aims to extract relevant information from the noisy raw ECG and BR data to
model cocaine craving and euphoria. This pipeline includes several essential steps: de-noising the raw ECG and
BR signals, detection of different characteristic anchor points on both the BR and ECG waveforms, extracting
meaningful features capturing structure and rate of change in cardiac and respiratory activities, selecting highly
important features from the initial feature pool. Although the exact feature sets used for modeling self-reports of
craving and euphoria (i.e., VAS scores) are different, the feature engineering pipeline remains the same.

4.2.1 Data Cleaning: Since the Zephyr chestband continuously collects data during the entire period of our
user study, the raw wearable ECG and BR signals include various sources of noise including motion artifacts,
change of coupling between the sensor and the body due to different body posture, signal dropouts, and errors
occurring during transfer of data from sensors to the device. As a result, cleaning the raw signal by using various
denoising algorithms is necessary to ensure a high quality of features.
Before cleaning the raw data, we used two simple rules to determine the usefulness of wearable sensor data

from a subject: (1) Data scarcity – if data is available only for a small temporal window for a user then we
refrained from using that stream of sensor data for the respective user; (2) Signal Quality – if the signal to noise
ratio is small then this suggests that the wearable sensor data carries little to no information. We computed
these two metrics for both ECG and respiratory waveforms for each user. In our dataset, these two rules led to
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discarding respiratory waveforms for the three users since they were only available for a tiny fraction of time (∼
2%).
After removing the noisy data using the above two simple rules, our next step was cleaning the ECG and BR

data. In order to clean raw ECG data, we leveraged methods from Natarajan et.al [41] to process ECG signals
for use in cocaine use detection. The noise removal process works by first removing noise from dropout by
identifying the R peaks. The distances between consecutive R peaks are then calculated. As heart rate is an
inverse measure of RR distances, all the intervals which have RR distance corresponding to implausible heart
rate are filtered out. Since we use BR data in addition to ECG, we added a filtering pipeline for this signal. To
clean raw BR data, we subtracted the mean from the raw signal to get rid of the DC components and then passed
the data through a 5th order bandpass Butterworth filter with a lower 3dB cutoff frequency of 0.0833 Hz and an
upper 3dB cutoff frequency of 0.5 Hz. The particular values for lower and upper cutoff frequencies were selected
so that we can capture all the breathing signals with rates between 5 to 30 breaths per minute.

Time (secs)
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Fig. 5. shows different morphological features extracted from one period of (a) Breathing (BR) and (b) ECG waveform.

4.3 Feature Extraction
After the raw ECG and BR signals have been denoised, we extract necessary features from these signals. Our
feature extraction can be divided into two stages. In the first stage, we extract morphological features at the
granularity of each ECG or BR waveform (e.g., QT interval, T Height, Inhalation time). These features capture the
structural information present in each beat of the signal. However, as we described earlier, this information is too
detailed to directly input to a classifier since we have limited number of labels. So, we need to aggregate beat-level
information into a more representative frame-level features which can be used as input to the classifier. In order
to do so, in the second stage, we apply statistical quantifiers on the morphological descriptors to approximate
the distribution of features within each frame. The statistical quantifier aims to estimate the distribution of the
morphological features (e.g., 67 percentile of QT interval) in a larger time period i.e., a frame.

4.3.1 Morphological Features for each Beat: In order to estimate the morphological descriptors of ECG and BR
waveform, the first step is to detect the characteristic points/peaks from the denoised waveform. For example,
the PQRST complex (P-wave, QRS complex, T-wave) which represents one complete heartbeat in the ECG is a
systematic method of interpreting ECG rhythm and marks a series of different cardiac activities. Figure 5b shows
the PQRST complex on a 1.2-second long sample of denoised ECG data collected in our study. In this paper, we
leverage the PQRST detection algorithm proposed by a recently published work of Natarajan et.al [40]. After
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Table 2. (a) The list of morphological descriptors extracted from ECG and Breathing (BR) waveform. (b) The list of statistical
quantifiers applied on all the morphological descriptors to extract frame-level features.

Data Morphological Descriptors Acronym

ECG
RR Distance RR
QT interval QT
PR interval PR
QRS interval QRS
QTc interval QTc
T Height Th

BR
Inhalation time INHTIM
Exhalation time EXHTIM
Inhalation depth INHDEP
Exhalation depth EXHDEP

Respiration Duration RD
(a)

Statistical Quantifiers Acronym
Minimum min

33 Percentile 33%
Median med

67 Percentile 67%
Maximum max

Standard Deviation std
Skewness skew
Kurtosis kurt

(b)

detecting the PQRST peaks, we estimated different distance (or interval) and height information capturing the
structure of the ECG waveform.

The morphological descriptors of the BR signal are also estimated in a similar fashion. At first, we estimate the
peaks and troughs in the bandpass-filtered breathing waveform. The peaks and troughs represent the maximum
expansion and contraction of chest or diaphragm due to inhalation and exhalation. Once we identify the peaks
and troughs, we estimate the morphological descriptors of breathing waveform by estimating the inhalation and
exhalation time, inhalation and exhalation depth and respiration duration which is the sum of inhalation and
exhalation time. Figure 5a shows all the morphological descriptors from a few seconds of BR data from our user
study. All the ECG and BR-based morphological descriptors are listed in Table 2a.

4.3.2 Statistical Quantifiers for each Frame: We get a morphological descriptor from every period of ECG
(the length of a heartbeat) and BR (the total duration of an inhalation and an exhalation) data. However, each
morphological descriptor extracted from a heartbeat or a breathing cycle cannot directly be used as a feature as
it is noisy and does not holistically capture the trends over time. By applying the statistical quantifiers listed
in Table 2b on all the morphological descriptors estimated from all the heartbeats and breathing periods in a
frame, we can capture the summary statistics that are both robust to noise and representative of the underlying
trend. One example feature can be the median of QT interval. From one ECG and BR frame, with a total of 11
morphological descriptors, we get 88 statistical quantifiers which are used as a features to our model.

4.3.3 Feature Normalization and Selection: Different frame level features estimated with different combinations
of morphological descriptors and statistical quantifiers have different ranges. For example, the median value
of QRS typically ranges between 0 and 0.5, but median respiration duration typically ranges between 3 and 5.
In order to keep all features in the same range between 0 and 1, we normalized the features with the help of
Min-Max scaling.

As a feature selection algorithm, recursive feature elimination algorithm [20] was used. This recursive algorithm
starts with a model trained with all the features and iteratively removes the least important feature to optimize
the performance (i.e., RMSE) of the model. We continue this process until the required number of features is
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reached. For all our VAS models, number of features required is a hyperparameter and is selected from [5, 10, 15,
20, 25, 30].

5 RESULTS: VAS CRAVING AND EUPHORIA PREDICTION

Table 3. The performance of VAS Craving and VAS Euphoria regression models trained with different feature subsets from
Leave-One-Subject-Out Cross-Validation (LOSOXV) experiments. The performance was measured in terms of average
Pearson correlation coefficient (ρ), Root-Mean Square Error (RMSE), Mean Absolute Error (MAE) across participants.

VAS Craving VAS Euphoria
Features Models ρ RMSE MAE ρ RMSE MAE
- Baseline 0.00 4.77 3.99 0.00 4.87 4.06
ECG+BR Random Forest 0.31 3.02 2.81 0.62 2.98 2.56
ECG+BR Neural Network (1 lnn) 0.49 1.95 1.74 0.70 1.91 1.52
ECG+BR Support Vector Regression 0.40 2.27 2.09 0.64 2.91 2.57
ECG+BR Linear Regression 0.49 1.76 1.40 0.73 1.67 1.34

As described in section 4, we model VAS Craving and VAS Euphoria score prediction as a regression problem.
We explore four different models for prediction — linear regression, one layer Neural network (1lnn), Support
Vector Regression (SVR) and Random Forests (RF). We compare these approaches against a baseline model which
does not use any of the sensor signals for prediction. This model simply uses the self-report score distribution
from the training data and randomly generates scores for test subject from this distribution. We use Leave-One-
Subject-Out Cross-Validation (LOSOXV) experiments for all the analysis. The LOSOXV experiment is performed
on the seven participants whose ECG and BR data is available. The performance was measured in terms of
average Pearson correlation coefficient (ρ), Root-Mean Square Error (RMSE), Mean Absolute Error (MAE) across
all the participants. Before training our models, we used synthetic minority oversampling technique (SMOTE)
[14] in data preprocessing step as the number of data instances for each VAS score class is uneven and we do not
want our model to be biased towards the majority class.

Table 3 shows the performance of different regression models for predicting self-reported VAS Craving and
VAS Euphoria scores. Overall, the linear regression model that used a combination of ECG and BR features gave
us the least RMSE and best Pearson correlation coefficient for both craving and euphoria self-report prediction.
For craving, the linear regression model trained with both ECG and BR features attains a Pearson correlation
coefficient (ρ) of 0.49 and an RMSE of 1.76. As the range of the VAS score is 0-10 by definition, the normalized root
mean squared error (NRMSE) is 17.6%. It indicates that the predicted VAS Craving is highly likely to be within
17.6% of the reference VAS score. For VAS Euphoria modeling, we achieved an even stronger result with the ρ of
0.73, RMSE of 1.67 and NRMSE of 16.7%. Our results show that a simpler model outperforms the other higher
complexity models. It is not surprising since the number of labels (i.e., self-reported VAS scores) are relatively
small. As a result, more complex models can over-fit to the data which may reduce performance.
We optimize the performance of our best model with respect to several hyperparameters including window,

and frame length of ECG and BR. With respect to best models shown in Table 3, we find that the optimal window
length for both VAS Craving and Euphoria modeling is 5 minutes. The optimal frame length for ECG and BR
features are 30 seconds and 1 minute respectively in both VAS predictions. As the period of the ECG signal
is significantly shorter than that of BR signal, a shorter frame length can sufficiently extract meaningful and
informative ECG features. For VAS Craving and Euphoria modeling, the feature selection algorithm selects 10
and 30 features respectively .
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5.1 Performance Breakdown across the VAS Scale
To evaluate how well we capture craving and euphoria across the VAS range, we show two scatter plots in Figure
6. These plots show how well the predicted VAS scores matches with the actual ones at different points on the
scale. Ideally, if all the predicted VAS scores exactly match with the actual ones, all the points will fall on the
diagonal red dash line. In our case, for both craving and euphoria VAS models, the predicted scores generally
follow the actual values. As the actual VAS scores increases, the predicted values also increase. This indicates that
our VAS Craving and Euphoria model can learn the subjective VAS scores across different regions on the scale
and can be effective in distinguishes between sub-ranges such as high craving or euphoria. While our results

(a) VAS Craving model (b) VAS Euphoria model

Fig. 6. shows two scatter plots: (a) between predicted and actual VAS Craving scores, (b) between predicted and actual VAS
Euphoria scores for different participants (encoded in different colors). Added small Gaussian noise to the actual VAS scores
to help with the visualization.

report the average performance across all VAS levels, we are generally more concerned with identifying the
higher levels of craving and euphoria. There are two reasons for this: 1) higher levels of craving and euphoria are
generally indicative of more addictive behavior and can help identify situations when interventions are required,
and b) many medications for treatment of cocaine dependence (e.g. Modafinil) work by blocking craving and
euphoria via modulation on various neurotransmitters such as dopamine, glutamate/GABA and others. Thus,
if we are able to identify higher levels of craving and euphoria, these can help us identify both intervention
points as well as efficacy of pharmacological treatment. If we use the VAS Craving and Euphoria linear regression
models for binary classification betweenVAS score >= 6 (High) andVAS score < 6 (Low), we achieve an average
F1 score of 0.83 for both VAS Craving and VAS Euphoria from LOSOXV experiment.

5.2 Performance Breakdown across Participants
The next questionwe ask is how the performance of ourmodels vary across participants. Since different individuals
can have widely varying cardiovascular response to cocaine (due to factors like habituation), we expect some
variation across the individuals in our study. Figure 7 shows the performance of our best model with respect to
RMSE and Pearson correlation coefficient for VAS craving and euphoria across different participants. For the
first seven participants, whose ECG and BR data is available, we reported the performance of the best model
with both these features. For the remaining three participants with ID-{8,9,10} whose BR data is not available,
we reported their performance by using the best model with just ECG features with LOSOXV done on all ten
participants. Later in section 5.3, we will demonstrate that ECG features, in the absence of BR features, can alone
be used for subjective VAS Craving and Euphoria modeling as BR features marginally improve the performance.
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(a) VAS Craving model (b) VAS Euphoria model

Fig. 7. shows the performance of (a) the VAS Craving model and (b) the VAS Euphoria model across different participants
with respect to Pearson correlation coefficient and RMSE. For participants 1 to 7, a linear regression model with ECG and BR
feature was used. The participants 8 to 10 only had ECG data, so a linear regression model with only ECG features is used
for these three participants.

Fig. 8. (a) Bar plots showing Predicted vs Ground truth for VAS Craving and VAS Euphoria a for Participant ID-3 .

The results, shown in Figure 7, suggest that the VAS prediction models have reasonably consistent performance
across all participants. For most of the participants, the RMSE is less than 2 for both craving and euphoria where
the actual VAS score ranges between 0 and 10. It indicates that our prediction is not far from the actual score and
we are almost always within ±2 of the actual score for both VAS Craving and Euphoria prediction. However, for
some of the participants our model does not perform well. For example, the VAS Craving model for participant 4
yields a high RMSE (with a value greater than 2, as can be seen in Figure 7a). The participant 4 has reported a
score of 10 for VAS Craving 70% of the time. As our participants rarely reported a VAS Craving score of 10, our
craving model under performs on the upper extremity of the scale in comparison to the lower and middle values.

We illustrate the result for one specific individual in Figure 8. The individual we select is Participant Id-3, for
whom we get roughly average performance i.e. neither the best nor the worst performance among all participants.
The plots show the Predicted VAS score and the Actual VAS score. We see that the predicted VAS scores follow
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the trend of ground truth VAS scores. Although the two lines do not perfectly align, they are relatively close and
the trends are accurate. We can see that the increasing and decreasing trend of the predicted VAS scores tends to
follow ground truth trends.

5.3 Feature Importance Analysis
We now look at which features are most informative for prediction of VAS scores. We breakdown the performance
of the best model, linear regression, by the specific feature sets and evaluate its performance when using features
solely from ECG, solely from BR, and both (Table 3).

Table 4. Breakdown of the contribution of each feature block to overall performance. Values reported are after we average
them across participants.

VAS Craving VAS Euphoria
Features Models ρ RMSE MAE ρ RMSE MAE
ECG+BR Linear Regression 0.49 1.76 1.40 0.73 1.67 1.34
ECG Linear Regression 0.41 1.86 1.46 0.72 1.99 1.58
BR Linear Regression 0.23 2.33 1.86 0.37 2.66 2.18

The results are shown in Table 4 and we used seven participants whose ECG and BR data are available for
this analysis. We see that the linear Regression model trained only on ECG features outperforms the BR feature-
based model for both craving and euphoria self-report prediction. This tells us that ECG features contain more
information than BR features about craving and euphoria. For VAS Craving prediction, the linear regression
model trained with only ECG features can reach a ρ of 0.41 and RMSE of 1.86 while the corresponding model
trained with BR features alone performs very poorly with ρ of 0.23 and RMSE of 2.33. Similarly, for VAS Euphoria
prediction, the linear regression model trained with only ECG features can reach a ρ of 0.72 and RMSE of 1.99
while the corresponding model trained with BR features alone performs very poorly with ρ of 0.37 and RMSE of
2.66. When it comes to VAS Craving prediction, BR features contribute complementary information on top of
the information captured by the ECG features and we can observe an increase in the ρ from 0.41 to 0.49 when
using ECG+BR feature based model over ECG feature based model. However, when it comes to VAS Euphoria
prediction, ECG+BR feature based model has only a slight improvement over the ECG only model from 0.72 to
0.73 in ρ (though we can observe some improvement in RMSE). We now drill-down further and look at which
features within the ECG and BR feature groups are more important to prediction. In order to systematically
answer this question, we grouped the features with respect to the corresponding morphological descriptors and
estimated the importance. The results are shown in Figure 9a. In order to evaluate the worth of a morphological
descriptor, we remove all the features corresponding to that descriptor from the full feature set. We then run
feature selection, train the model, and evaluate the performance of the VAS model with respect to RMSE with the
help of a LOSOXV experiment. The RMSE increase due to the removal of all the features corresponding to the
morphological descriptors gives us a measure of the importance of that morphological descriptor. We considered
our best models which is ECG+BR feature based linear regression model both for craving and euphoria in this
experiment.
Figure 9a tells us that for the case of VAS Craving, Th descriptor is the single most dominating feature as it

caused the highest jump in RMSE after removing, followed by RR descriptor. Similarly, for VAS Euphoria both
QRS and RR descriptors caused a big rise in RMSE. For both VAS Craving and Euphoria, RR descriptor was
amongst the top features. This follows in line with the previous studies. Heart-rate variability and Cardiac Vagal
tone, which are estimated from RR distance, are shown to be a reliable indicator of craving and euphoria in
substance abuse [17, 42]. The statistical quantifiers which were selected after feature selection corresponding to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 2, Article 46. Publication date: June 2019.



On-body Sensing of Cocaine Craving, Euphoria and Drug-SeekingBehavior Using ... • 46:19

(a)

(b) (c)

Fig. 9. (a) The importance of features corresponding to different morphological descriptors of ECG and BR for VAS Craving
and Euphoria. The RMSE increase due to the removal of all the features corresponding to the morphological descriptors
gives us a measure of the importance of that morphological descriptor. (b) The Cumulative Distribution Function (CDF) of
the Maximum value of T Height which is normalized, with respect to VAS Craving score in three different ranges. (c) The
CDF of the Median value of QRS interval which is normalized, with respect to VAS Euphoria score in three different ranges.

these descriptors are analyzed and we demonstrate cumulative distribution function (CDF) of these features for 3
groups of scores- [0-3],[4-7],[8-10] with respect to the best statistical quantifier in Figure 9b and 9c.

5.4 Influence from Demographic related Factors
During the initial screening process we have gathered information about several demographic factors which
include age, weight, number of years of cocaine use, average days of cocaine use in a month, and average dollar
($) spent per cocaine use. The demographic factors and their distribution are listed in Table 5.

In this section, we aim to identify the key demographic factors that can impact the performance of our VAS
Craving and Euphoria models by providing complementary information to the cardiac and respiratory features.
We have added a demographic factor as an additional input to the model in addition to the top selected feature
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Table 5. Demographic factors and statistics of 10 subjects. The statistics is presented either in the form of mean and standard
deviation (SD) values or count and percentage values.

Factors Statistics
Gender, n (%) Male 8 (80)

Female 2 (20)
Age, mean (SD) 43.1 (6.1)
Weight (lbs), mean (SD) 190.8 ( 29.7)
Years of Cocaine use, mean (SD) 19 (7.1)
Average dollar($) per cocaine use, mean (SD) 121.5 (75.3)
Average days of cocaine use per month, mean (SD) 19.3 (8.4)

subset and observed the change in RMSE. A factor that brings important complementary information to the
top selected feature subset will help the VAS Craving and Euphoria model to achieve higher performance (i.e.,
decrease RMSE). Rather than directly using the value of the demographic factor, we grouped subjects into two
groups based on the median of this demographic factor and used the group id as an additional input. We have
considered all 10 subjects data for this analysis. Figure 10a and 10b show the RMSE of different models where
each of the demographic factors are used as an additional input. With the dashed line, these figures also show the
RMSE of the best performing VAS Craving and Euphoria models with top selected feature subset without any
demographic factors.
Our analysis suggests that for both VAS Craving and VAS Euphoria, “Average $/use” as an additional feature yields
the significant decrease in RMSE. The RMSE dropped from 1.93 to 1.85 in the case of VAS Craving and from 1.89
to 1.78 in VAS Euphoria. All the other demographic factor fails to yield a decrease in the RMSE for VAS Craving
and Euphoria prediction. The average $ per use is a psychologically salient/convenient proxy for the amount
of cocaine use (e.g., as compared to grams). It may reflect different cocaine use related phenomena, including
severity of use and can also reflect tolerance and/or pharmacokinetic factors. In order to further investigate why
exactly average $ per use helps to refine our cardiac and respiratory signal-based model and yields a lower RMSE,
we explore if there is a statistically significant main effect between average $ per use and the VAS scores that they
have reported. We categorize the average $ per use into two groups based on the median value. As can be seen in
Figure 10c, Group 1, who spends more than median, tends to crave more as compared to Group 2, who spends
less than the median. There is a statistically significant difference between the two groups (p<0.05). The members
of Group 1, can be thought of as heavy cocaine users who are used to the high amount of cocaine. The heavy
users in Group 1 tend to report a higher level of VAS Craving values. As a result, when average $ per cocaine
use is used as an additional input feature, the VAS Craving model learned to adjust its craving inferences based
on the factor. We also observed a similar statistically significant difference in the VAS Euphoria values between
Group 1 and 2. The members of Group 1 who spend a higher $ amount on cocaine per use also clicked at a higher
rate leading to a greater number of infusions during the self-administration session. This is most evident during
the 32 mg session. More specifically, Group 1 reported higher VAS Euphoria values than Group 2 ( as can be
seen in Figure 10d). The latter findings are not consistent with tolerance or pharmacokinetic effects, but rather,
suggest that Group 1 subjects are heavier users with attendantly larger levels of Craving and Euphoria.

6 PREDICTING DRUG-SEEKING BEHAVIOR VIA CLICK DENSITY
One intriguing signal that we obtain in our self-administration period is drug-seeking behavior, i.e., the pattern
of clicks by the subject to request or seek an additional bolus of the drug. This drug-seeking behavior has been
studied in animal behavior studies, particularly in rats [45, 54], but we are unaware of work that explores whether
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(a) (b)

(c) (d)

Fig. 10. (a) The influence of demographic factors on VAS Craving. The RMSE change due to the addition of a factor gives us a
measure of the importance of that factor. Here we can see that only the addition of "Average $/use" decreases the RMSE from
the model without any demographic factor (marked by the horizontal dotted red line). (b) The influence of demographic
factors on VAS Euphoria. Similar to VAS Craving, we can see addition of "Average $/use" decreases the RMSE. (c) The bar plot
showing that subjects whose "Average $/use" ≥ median on average crave more as compared to subjects with "Average $/use"
< median (p<0.05) . (d) The bar plot showing that subjects whose "Average $/use" ≥ median on average feel more euphoric as
compared to subjects with "Average $/use" < median (p<0.05) .

such drug-seeking behavior can be predicted using physiological sensor signals in human trials. While there are
certain to be differences between drug-seeking via clicks in a lab study versus self-administration in a real-world
setting, our exploration can provide initial insights into whether this behavior is predictable.

6.1 Relation between Drug-seeking and Craving
The first question we ask is whether intensity of drug-seeking behavior follows the intensity of craving. The
link between drug-seeking and drug craving has been well-established and is illustrated by the addiction loop in
Figure 1[16]. This means our study should show some relation between VAS Craving and click frequency/density.
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In other words, if the subject experiences high craving, this should, in principle, lead to more intense drug-seeking
behavior. We show that there is indeed a strong connection between the two variables i.e. when participants
reported a higher craving level, they tended to click more frequently.

Fig. 11. shows the error bars of click density at different VAS Craving scores (0-10). The height of the bar represent the mean
click density while the thin black line represents one standard deviation from the mean value.

The error bars in Figure 11 show that click density increases with an increase in VAS Craving score. In order
to explore whether the relationship between VAS Craving scores and click density is statistically significant, We
conducted a one-way between subjects ANOVA between VAS Craving scores and click density across all the
0-10 VAS craving levels. Here, we compute click density as the total number of clicks in the ten minute window
prior to VAS Craving self-report. Our results showed that there was a significant main effect of VAS Craving on
click density at the p<.0001 for all the 11 levels [F(10, 348) = 8.62, p = 1.31e-12]. Post hoc comparisons using the
Tukey HSD test indicated that the mean score for the click densities associated with VAS Craving score of 8 and
9 is significantly different from the click densities associated with VAS Craving scores of less than 8. We note
that the average click density of VAS Craving score of 10 does not follow the trend. This is primarily because
very few participants reported a VAS Craving score of 10, which resulted in too few data points to draw a strong
conclusion. Thus, our results suggest that our participants tend to click more as they report to feel a high level of
craving via VAS Craving score.

6.2 Predicting Drug-seeking from Physiological Signals
The strong relationship between VAS Craving and click density suggests that click density may be predictable
from physiological sensor signals. This leads to the following questions: Can we detect whether the participant will
click in the current minute with the cardiac and respiratory signals? Do the cardiac and respiratory signals contain
information about the participant’s aggregate clicking behavior? In this section we will demonstrate that the ECG
and BR signals not only can capture the subjective feelings of cocaine craving and euphoria but also can explain
drug-seeking behavior which is captured by the button clicking behavior of participants in our user study.

Figure 12 illustrates our click prediction model. The model has two stages – in the first stage, we train a binary
click vs. no click classifier that predicts whether the person will click in a certain minute. In the second stage, the
minute by minute click vs. no click inferences are then accumulated over a larger period of time to estimate click
density. The model architecture for click prediction is very similar to the VAS model, with the only difference
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Fig. 12. illustrates the modeling approach we used for click prediction. Here we use a Window , N=5 minutes. The frame
length = 1 minute, number of frames= 5. In each frame we are using ECG+BR features (the output of statistical quantifiers)
as input to the model.

being click prediction is done for every minute (since the frequency is high) whereas VAS Craving and Euphoria
predictions are done every five minutes. Similar to the VAS model, we run the same feature selection algorithm to
select highly informative ECG and BR features which are then used to train the binary classifier. The click model
also captures temporal changes of features by incorporating all the frames in the current and (N − 1) previous
minutes, where N is the length of the window.

6.2.1 Click vs. No Click Classification. The binary click vs. no click classifier uses the cardiac and respiratory
signals to predict whether a participant clicked in a certain minute or not. We find that our participants tend
to click differently across sessions with different dosage levels. In sessions with lower dosage level (e.g., 8mg),
our participants clicked twice as much as they clicked in session with higher dosage levels (e.g., 32mg). This
observation can be intuitively explained. In lower dosage sessions, the small amount of cocaine in each bolus
fails to satisfy the participants which results in clicking more frequently. In order to understand the usefulness
of dosage information for click classification, we considered two types of models: a) Dosage Independent Click
Model, and b) Dosage Dependent Click Model. In the Dosage Independent Model, we train a single model for
click classification while in the Dosage Dependent Model we used three different models for each dosage levels
(i.e., for 8, 16, and 32 mg). The predictions from these three models are combined to get complete click prediction
for whole self-administration period and compare against dosage independent model. Similar to VAS models, we
used SMOTE algorithm to balance the data instances for both the classes.

Table 6 shows the performance of these two types of models with different feature groups in terms of average
F1 Score, Precision and Recall from Leave-One-Subject-Out Cross-Validation (LOSOXV) experiments. Here, from
each participant we used 180 minutes of self-administration data with 60 minutes from each dosage level. As a
baseline, we used a model very similar to the VAS baseline, where based on the training data, we learned the
distribution of clicks and no-clicks. We then randomly predicted for test participant using this distribution.
Let us first look at the performance of the dosage independent model. The first observation we can make is

that the random baseline model performs very poorly with a F1 score 0.49. Thus, prior click distribution alone
fails to predict the clicking behavior whereas all dosage independent models outperform the random baseline
model. However, the ECG and BR features do contain information about the click behavior that allows us to
classify clicks significantly more accurately than random baseline. The best dosage independent model is a logistic
regression model that uses both ECG and BR features. As can be seen in Table 6, this classifier achieves a F1
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Table 6. The performance of binary click vs. no click classifier with different models and features. Values reported are after
we average them across participants

Type Features Model F1 Score Precision Recall
Dosage Independent - Baseline 0.49 0.49 0.49
Dosage Independent ECG+BR Random Forest 0.54 0.54 0.55
Dosage Independent ECG+BR Neural Network (1 lnn) 0.65 0.63 0.65
Dosage Independent ECG+BR Support Vector Machine 0.68 0.67 0.70
Dosage Independent ECG+BR Logistic Regression 0.72 0.70 0.74
Dosage Independent ECG Logistic Regression 0.67 0.66 0.71
Dosage Independent BR Logistic Regression 0.58 0.58 0.59
Dosage Dependent - Baseline 0.56 0.55 0.56
Dosage Dependent ECG+BR Logistic Regression 0.80 0.79 0.82
Dosage Dependent ECG Logistic Regression 0.76 0.74 0.75
Dosage Dependent BR Logistic Regression 0.68 0.67 0.68

score of 0.72 with corresponding precision and recall being 0.70 and 0.74. We note that the reason for this model
outperforming other more complex variants such as neural network, SVM and Random Forest could simply be
because we have limited data to fit more complex models. Let us now look at the performance of the dosage
dependent click model. As can be seen in Table 6, the dosage dependent model trained on top selected ECG and
BR features outperforms the best dosage independent model by about 8% in F1 score. This model achieves an F1
score, precision and recall of 0.80, 0.79 and 0.82 respectively. These results confirm our previous observation that
dosage level is indeed an important factor that effects clicking behavior. However, in order to know which among
the three dosage level models to be used for a given data instance, we can use an automatic dosage or bolus
amount detection model. In a recent work, Natarajan et al.[41] demonstrated that we can differentiate between
different dosage levels of cocaine administration or usage with ECG features [41]. We can use the output of the
dosage level detector as an input in the dosage dependent model.

In terms of feature importance we see the same trend as we have observed in VAS modeling. ECG features are
generally more informative than BR features for click classification for both Dosage Independent and Dependent
models. However, the fusion of ECG and BR features improves over just using ECG features showing that there
is complementary information being captured in BR features.

6.2.2 Click Density Estimation. We now look at how well we can estimate click density by aggregating the
results from click classification. The click density is estimated by the total number of clicks in a time period of ten
minutes. We run a LOSOXV experiment to classify clicks and estimate click density on the unseen participant.
With the best dosage dependent click classifier, we find that the estimated click density is strongly correlated with
the ground truth values with a Pearson correlation coefficient of 0.85 and an RMSE of 1.79. As we considered ten
minute window to capture click density which means our click density score is in 0-10 range, the normalized
root mean squared error (NRMSE) is 17.9%. Thus, our results suggest that our proposed dosage dependent click
model can accurately predict the click density by using cardiac and respiratory features. With the best dosage
independent classifier, we can predict the click density with a Pearson correlation coefficient of 0.78, RMSE
of 2.15, and NRMSE of 21.5%. The dosage independent model performs slightly worse than dosage dependent
model for click density estimation. However, only marginal decrease in the correlation coefficient and increase
in NRMSE indicates that the overall click density trend can be captured reasonably accurately with the dosage
independent click classifier as well.
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(a) (b)

Fig. 13. (a) shows the confusion matrix of the click density across three different range bins. (b) shows over 3 hours of
predicted and ground truth click density from the cardiac and respiratory data captured from participant id-3. Break period
has been omitted from this timeline as participants cannot click then.

We further investigate whether the predicted click density matches up with the ground truth values across
different levels of click density. We binned click density scores into three groups [0-3],[4-7], and [8-10] and report
the confusion matrix between predicted and actual click density in Figure 13a using best Dosage Dependent click
model. It is evident from this confusion matrix that our click model performs very well when predicting scores in
the range [0-3], and [8-10] with performance in [8-10] range being the best. While predicting in [4-7], our model
gets confused with [8-10] scores but still largely does well.

To illustrate, Figure 13b shows the predicted and ground truth click density corresponding to the participant ID-
3 for the entire duration of three self-administration sessions using best dosage dependent model. The predicted
click density closely follows the trend of the ground truth values.
While

6.3 Implications for Real-World Interventions
Overall, our results suggest that drug-seeking behavior might indeed be predicted from peripheral physiological
signals. While many more factors are likely to influence real-world drug-seeking behavior, including proximity
to locations where drugs are or were previously available, the current work constitutes a promising first step
towards developing sensor-based methods for just-in-time interventions for addictive behavior. Alternatively
stated, our current work opens up the possibility to develop a classifier that might reliably and robustly identify
(i.e., predict) drug craving states that predispose to relapse - such that clinical interventions might be targeted in
a timely fashion so preserve sobriety. While such interventions have shown tremendous promise for other drugs
of abuse (e.g., nicotine) to our knowledge, ours is the first to explore their feasibility for cocaine.

7 DISCUSSION
In this discussion section, we aim to highlight the new insights in terms of sensing, features, and methods that
we have generated in our work. We will also dive deeper in the technical design and describe how our design
could generalize across different application scenarios, different population (i.e., opioid users), different setting
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(i.e., outpatient) and different on-body wearable sensors with different form factors. Lastly, we will discuss the
limitations and future works.

7.1 New Insights and Key Takeaways
There are several new insights and takeaways that we have generated in our work:

• The cardiac and respiratory signals contain information about different integral components of
the Addiction Loop: Euphoria, Craving and Drug-seeking behavior. Most importantly, all the cardiac
and respiratory signals were captured by a low-cost wearable chest band. While there is some prior work
on modeling craving in the context of smoking [13], we are unaware of prior work on continuous and
passive sensing of craving, euphoria, and drug-seeking behavior for cocaine use with mobile and ubiquitous
technology in a controlled laboratory setting.

• A significant milestone for our work was that we can accurately predict the Drug-seeking Behav-
iors (i.e., participant’s “minute-by-minute" clicks and subsequently click density) simply from
cardiac and respiratory signals. This is potentially exciting and surprising development for researchers
and developer who aims to develop tools for predicting drug-seeking behavior (including the relapse to
such behavior) with mobile and ubiquitous technology. To date, most of the research on understanding
drug-seeking behavior has been done through experiments conducted on rodents. Our work was the first
to show it is indeed possible to predict drug-seeking behavior in humans using sensor data in a lab setting
during the self-administration period (section 6).

• The self-administration data collection can also give us further insights into how to measure an
addict’s micro-behaviors that are associated with the actions (i.e., clicks) and subjective feelings (i.e., VAS
scores) during multiple binge intake sessions with multiple levels of dosage. Our participants tolerated
the wearable sensors during Self-administration period which is done to model a real-world scenario
of "binge" session where subjects have control over when to take cocaine and allows them to take various
boluses within a short period of time.

• Instead of focusing on modeling, we focused on crafting and engineering different morphological features
of ECG and BR waveforms in our work. We present a detailed analysis of the relative importance
of physiological features for cocaine craving and euphoria modeling and demonstrate that such
feature sets are distinctly different for craving and euphoria. For example, our analysis shows that
overall there is more information in ECG than in the BR channel. We also evaluated contribution of different
individual morphological feature of ECG and BR features (section 5.3). With regards to these features,
we are not aware of any prior work showing a relationship between the cardio-respiratory data and the
drug-related states or behaviors (i.e., craving, euphoria, and drug-seeking behavior) for cocaine.

• We have systematically analyzed and identified the key demographic factors that impact the VAS
Craving and Euphoria models. Our analysis shows that the “average dollar ($) spent per use" is a key
background demographic factor that has a statistically significant main effect on how our participants
scored VAS Craving and Euphoria value (in section 5.4). Our VAS models can fine tune it’s prediction,
simply by taking this background demographic factor as an additional input.

7.2 Generalizability across Different Populations, Real-World mHealth Applications and Wearables
The proposed on-body sensing solution for monitoring craving, euphoria and drug-seeking behavior has been
validated in the context of a controlled clinical environment. A real-world mHealth application where our work
is potentially transferable is to use our methods on abstinent cocaine users and to predict their craving and
vulnerability to relapse (i.e., recurrent drug use behavior). Such a passive and continuous craving model could
also facilitate early interventions (e.g., the subject receiving a text message asking them to attend a self-help
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group or, for a patient with opioid use disorder, reminding them risks of overdoses/importance of having a Narcan
kit available).
Our method is also potentially transferable to other wearable devices that allow us to capture ECG and breathing
accurately. There are several such off-the-shelf solutions in the market, such as Hexoskin smart shirt [2], Equivital
LifeMonitor [1]. For example, Hexoskin smart garment (in a form factor of a shirt) can be comfortably worn and
can continuously and passively collect ECG and breathing data with its built-in 3-lead ECG (with dry electrodes),
Respiration Inductance Plethysmography (RIP) bands. One of the major challenges of Zephyr chest band was
that it requires relatively tight contact with the body for capturing high-quality data. Although our participants
in the laboratory study have tolerated the chest band well, solutions like Hexoskin smart shirt might be preferred
for real-world studies.
Another interesting insight from our work that can inform future prototypes is that ECG is more informative
about craving, euphoria and drug-seeking behavior than BR. In recent times, increasingly more wearable devices
(e.g., Apple watch or Alphabet’s new smartwatch) are enabling customers to take an ECG recording directly from
the wrist just with a finger touch. In the future, we aim to validate our models with these new smartwatches. The
addition of ECG in the consumer-grade wearable devices will enable us to collect a large-scale ECG dataset with
ground truth measurements of craving, euphoria and drug-seeking behavior in the real-world settings. We also
aim to develop an app based intervention model which identifies craving or drug-seeking moments and trigger
Just-in-Time intervention.
In order to get further insights into the potential generalizability of our findings for the development of real
world applications, we conducted informal interviews. We talked with several addiction psychiatrists/addiction
experts. Upon explaining our results and findings, we asked these domain experts to share their views on how
our findings may or may not apply in the broader context of real world application development. Some of their
notable responses are listed below:

• Addiction Researcher 1: “I think that a wearable monitor which predicts craving and cocaine self-
administration could be very helpful for clinicians. If such a device were found to be reliable, it could be
used to monitor early treatment response and therefore could allow clinicians to more rapidly optimize
patient care (rather than waiting for patients to relapse as an indication that a given treatment isn’t working).
Furthermore, wearable monitors are already used in other disciplines (e.g. holter monitors in cardiology)
and could easily be extended to addiction care.”

• Addiction Researcher 2: “If the wearable sensors could predict potential relapse in the short-term, I
suppose, it could also be used as a mechanism for patients to receive some form of biofeedback, and then
use relapse prevention techniques to prevent relapse. It could also help people to better understand what
their triggers for relapse are.”

• Addiction Researcher 3: “Wearable technology is ubiquitous and acceptable in a variety of situations.
Chest straps are routinely worn during exercise and other monitoring. Watches are expanding capabilities
to monitor for a variety of heart-related conditions. These wearable technologies may have a major impact
on the future of healthcare as so many are now routinely wearing them. Applying this technology to the
substance use field, particularly for real-time detection of various physiologic and emotional states, would
provide much-needed information that could expand our understanding of substance use disorders.”

7.3 Limitations and Future Opportunity
Despite the encouraging results for cardio-respiratory signal-based craving, euphoria and drug-seeking behavior
modeling, we need to be cautious while interpreting the result. We have collected the sensor data from 10
expert cocaine users who had at least a decade-long of experience in cocaine use. While the current sample size
(N = 10) is typical for such a human laboratory study (considering the risk, cost, recruitment difficulties, and
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large pharmacological effect), we cannot completely rule out the possibility that our findings are unique to the
current cohort and that testing of our model in a second human laboratory cohort is warranted. For example,
it will be interesting to explore whether the craving and euphoria models trained on expert cocaine users will
generalize across new cocaine users. Whether long term cocaine use changes aspects of our brain that causes the
heartbeat and breathing signal to change over time, is something that warrants further study in the future.
Another major limitation of our study is that a large outpatient naturalistic design was not employed. While
the controlled experiments allowed us to monitor the cardio-respiratory changes of our participants during
self-administration sessions in a safe and secure environment while frequently sampling (every 5 minutes)
their subjective VAS craving and euphoria scores over a long period of time (i.e., 6 hours), it is not clear if our
participants would tolerate that frequent sampling in the real-world setting and whether the frequent sampling
would substantially degrade the quality of the VAS scores. Similarly, drug-seeking behavior could be measured
through the button click mechanism in our study. Future work would also need to standardize unit measurements
in order to have an equivalent outcome of click measure of drug-seeking behavior could be recorded in the
real-world setting as well and whether there are any other proxy variable for drug-seeking behavior that can
be employed in the real-world. As a result, a new study and ubiquitous computing tools need to be designed
to collect both the sensor data and information about the drug-induced internal state from a large population
in a scalable manner. For example, most cocaine use in the real world involves smoked (i.e., crack) cocaine and
methods for the tracking of outpatient cocaine use (e.g., perhaps methods that combined respiratory, cardiac
and psycho-/locomotor approaches) need to be developed. Collecting such a real-world large-scale dataset also
requires multi-disciplinary and possibly multi-institutional efforts. We are currently actively working towards
such an effort.
From a modeling perspective, there are several things that we aim to do. For example, to make use of the temporal
information, we aim to use Conditional Random Field (CRF) and Long Short-Term Memory (LSTM) models. The
effectiveness of these relatively more complex models can be properly evaluated only after we collect a larger
dataset. Currently, we extracted the ECG and BR features from fixed morphological descriptors which have
the advantage of being easier to interpret by the domain experts from Addiction psychiatry and cardiology. In
the future, we aim to explore features collected from the wavelet transformation of the physiological signals to
capture subtle information of the raw waveform.

8 CONCLUSION
In this paper, we have demonstrated that cardiac and respiratory signals captured from a wearable sensor can be
used to predict subjective craving and euphoria levels. While the state-of-the-art ubiquitous computing platforms
developed for addiction research primarily focuses on detecting drug use or administration, this paper takes a
significant leap by demonstrating that it is possible to accurately model cocaine-induced subjective states (e.g.,
craving and euphoria) as well as compulsive drug-seeking behavior with continuous and passive physiological
measurements. Our wearable solution shows considerable promise for monitoring and potentially developing
holistic models of the complex relationships between drug craving, euphoria, and drug-seeking behavior in the
real world setting.

We train two linear regressionmodels for VAS craving and euphoria score predictionwhich achieve a normalized
RMSE of respectively 17.6% and 16.7% from LOSOXV experiments. With respect to Pearson correlation coefficient,
they achieve 0.49 and 0.73 respectively. The high fidelity of VAS Craving and Euphoria prediction is achieved
by simple linear models with carefully designed cardiac and respiratory features which makes them easy to
deploy and less susceptible to over-fitting problem. We present a detailed analysis of the relative importance of
physiological features for cocaine craving and euphoria modeling and demonstrate that such feature sets are
distinctly different for craving and euphoria. The “average dollar ($) per use” is identified as a key demographic
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factor that can improve the performance of our VAS Craving and Euphoria models. Lastly, we model drug-seeking
behavior using cardiac and respiratory signals. Specifically, we demonstrate that the features extracted from
physiological signals can be used to predict participant button clicks with an F1 score of 0.80 and estimate different
levels of click density with a correlation coefficient of 0.85 and an normalized RMSE of 17.9%.
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